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Abstract--The heat transfer and reaction characteristics of a chemically reactive flow near the stagnation 
point of a catalytic porous bed with finite thickness are investigated theoretically. Due to the catalytic 
effect, the activation energy is reduced such that chemical reaction in the bed becomes possible even at 
relatively low flow temperatures. The steady state and initial transient period in the gas phase upstream 
and in the catalytic porous bed are studied using both the singular perturbation method and the finite 
difference method. For the perturbation analysis, a single layer model is sufficient when the bed is relatively 
thin, of the order of the characteristic thermal diffusion length scale. For a thick bed, a multiple layer 
analysis is necessary. Results from the steady-state analysis show that for a higher chemical reactivity, 
lower flow velocity gradient, lower activation energy, and lower mass diffusion rate, the conversion rate 
from reactants to products is higher so that a thinner bed can be used to reach complete reaction. Moreover, 
due to the high thermal conductivity of the solid porous material, temperature profiles are modified by the 
heat release through chemical reaction only slightly for a thin bed. The flow temperature is affected by the 
reaction more significantly for a thicker bed because more heat is released from the reaction, and the 
increased importance of convection effect. Numerical results for the transient case exhibit the same 

characteristics as in the steady state. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Chemically reactive flows in porous media have 
recently received attention because of their practical 
importance relating to energy utilization and environ- 
mental cleanup. Examples are combustion in situ in 
underground reservoirs for enhanced oil recovery [1], 
ceramic radiant porous burners used by industrial 
firms as an efficient heat transfer device [2], and the 
reduction of hazardous combustion products using 
catalytic porous beds. It is the last application that 
motivates the present study. 

It is well known that exhaust gases from internal 
combustion engines usually contain carbon monox- 
ide, residual hydrocarbons and nitrogen oxides that 
are hazardous to living organisms, so their formation 
must be reduced to an acceptable level. Regulations 
have been imposed by the government to reduce the 
negative impact of air quality from automobiles' 
exhaust gases. A review by McDermott [3] indicated 
that catalytic converters are the only available tech- 
nology in the automobile industry to meet the most 
stringent emission control standards. A catalytic con- 
verter is essentially a porous bed which converts the 
residual hydrocarbons and carbon monoxide to car- 
bon dioxide and water vapor at relatively low tem- 
peratures. The physical structure of a catalytic con- 
verter shows that the flow in the catalytic bed is a 
combination of a one-dimensional flow and a stag- 
nation point flow, but more like the latter. To facilitate 
the investigation, the problem is idealized as a stag- 

nation point flow impinging a catalytic porous bed 
with a finite thickness. 

The problem of gaseous premixed combustion in 
the stagnation point flow has been analyzed exten- 
sively due to its fundamental importance. The propa- 
gation of a premixed stagnation point flame has been 
extensively studied adopting both the constant density 
[4--6] and variable density [7, 8] approximations. Only 
quantitative differences were observed between these 
two approaches. The stagnation point flame against a 
catalytic surface with the flame attached to the surface 
has also been studied [9, 10]. In these analyses, the 
flame temperature, standoff distance, and extinction 
condition were solved versus the effect of strain rate by 
adopting a one-step, overall and irreversible reaction 
following the Arrhenius kinetics with high activation 
energy. 

Transport phenomena in porous media differ from 
those in the gas phase in two important aspects. 
Firstly, an additional drag force exists in the flow field 
due to the existence of solid particles, which is usually 
much larger than the viscous force and consequently 
the latter can be neglected in the momentum equation. 
If the flow velocity is small and the characteristic 
particle size is much smaller than the hydrodynamic 
length scale of interest, Darcy's law can be used as 
the momentum equation [1 I]. Secondly, the effective 
stagnant thermal conductivity of a saturated porous 
medium depends on the thermal conductivities of both 
the solid and gas phases [12], which is much higher 
than that of the gas alone because the thermal con- 
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NOMENCLATURE 

integration constants 
pre-exponential factor 
specific heat of the gas at constant 
pressure 
specific heat of the solid porous 
material 
mass diffusion coefficient 
DamkOhler number defined as B/pk 
activation energy 
rescaled nondimensional activation 
energy 
functions defined after equation (33) 
reciprocal of the rescaled porous bed 
thickness 
thickness of the porous bed 
minimum porous bed thickness to 
reach 99% conversion 
velocity gradient, also the strain rate, 
of the flow 
permeability of the porous bed 
Lewis number defined as 2/(pDcp) 
heat of combustion per unit mass of 
the controlling reactant 
universal gas constant 
time 
time to reach steady state 
temperature 
flow velocity along (x, y) directions 
spatial coordinates 

Y 
.7 

mass fraction of the controlling species 
rescaled nondimensional spatial 
coordinate defined as z = )~//q. 

Greek symbols 
parameter defined after equation (63) 

7, q~ parameter defined after equation (53) 
Y, • function defined after equation (53) 
~: small parameter defined as  1/~ 1'2 
q~ porosity of the porous bed 
2 thermal conductivity of the gas 
A parameter defined after equation (37) 
2m effective thermal conductivity in the 

porous bed 
p density 
c~ specific heat ratio 

stretched coordinate in the gas phase 
region adjacent to the interface. 

Subscripts 
i, o inner and outer solutions 
w quantities at the impermeable 

wall 
~u imposed free boundary conditions. 

Superscripts 
' solutions in the gas phase region 

solutions in the porous bed 
• nondimensional quantities. 

ductivity of the solid phase is much higher than that 
of the gas phase. 

Although extensive research work has been devoted 
to heat transfer in porous media, chemically reactive 
flows in porous media received little attention until 
recently. Chen et al. [13] studied the premixed com- 
bustion in a porous medium and found that radiation 
heat transfer promotes flame stability and propa- 
gation speed. Hsu et al. [14] studied a similar problem 
using detailed chemical kinetics, and the effects of 
porous material, combustor geometry, and kinetic 
parameters were discussed. Recently Chao et al. [15] 
analyzed the nonpremixed burning of a condensed 
fuel in a porous medium with a natural convective 
oxidizer flow adjacent to the wall and obtained a solu- 
tion for flame temperature, standoffdistance and mass 
consumption rate. Chemical reacting flows in porous 
media at low temperatures have also been investigated 
[16-18]. 

In the present paper, the problem of a chemically 
reactive stagnation point flow in a catalytic porous 
bed will be theoretically investigated. The math- 
ematical formulation of the problem will first be 
described. The steady reaction characteristics in a thin 

and a thick porous bed will be subsequently analyzed 
by a perturbation method. Numerical solutions will 
be carried out for the steady and transient periods. 
The effects of different parameters on heat transfer 
and reaction characteristics in the gas region and the 
porous bed will also be discussed. 

2. FORMULATION 

The problem to be analyzed is a laminar, premixed 
chemically reactive stagnation point flow in a catalytic 
porous bed of finite thickness H, with the origin of 
the coordinate system placed at the stagnation point 
as shown in Fig. 1. The flow is bounded by an imper- 
meable surface at the far side of the catalytic bed. The 
two-dimensional stagnation point flow can be divided 
into two regions: a homogeneous gas phase region 
before the flow enters the porous bed and a two phase, 
solid-gas region within the bed. Since the system is 
usually operating at relatively low temperatures com- 
paring to the normal flame temperature, and tem- 
perature variations in the whole flow field are not 
significant, the flow density p, gaseous thermal con- 
ductivity 2, mass diffusion coefficient D, and gaseous 
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Premixed Combustible Gas 

Fig. 1. Schematic defining the problem to be studied. 

specific heat at constant pressure cp can be considered 
as constants. This allows decoupling of the continuity 
and momentum equations from the energy and species 
equations so that only the latter needs to be solved. 
The reaction rate is assumed to follow a single-reac- 
tant, first order, one-step Arrhenius kinetics. Radi- 
ation is neglected due to the low flow temperature. 

Since the two regions described are controlled by 
different transport characteristics, the conservation 
equations need to be formulated separately. In the gas 
phase region bounded by H < y < ~ (Fig. 1), we 
have a potential flow so that the solution of the vel- 
ocity field is u = kx and v = - k y  where x and y are 
the spatial coordinates parallel and normal to the 
impermeable surface, and u and v the velocity com- 
ponents along x and y directions. The velocity gradi- 
ent k is the parameter describing the flow strain rate. 
Due to the high activation energy and low flow tem- 
perature in this region, chemical reaction is negligible 
so that the energy and species conservation equations 
are 

dT + OT + 2 c32T + 

~t Icy 13y pep 0), 2 - 0 (1) 

~y+ Oy+ ~2y+ 
~t ky~-y - D - 7 -  = o (2) 

with the boundary conditions 

y ~ o o :  T+ ~ T ,  Y+ ~ Y ~ .  (3) 

In the above, t is the time, T the temperature, Y 
the mass fraction of the controlling species, and the 
superscript " + "  denotes the quantities in the gas 
phase region, and T~ and Y~ are prescribed. 

In the porous bed, 0 < y < H ,  Darcy's law is 
adopted, so the macroscopic flow field is again a 
potential flow and the flow velocity is given by (kx/K, 
- k y / K )  where K is the permeability of the porous 
medium. Multiplying the flow velocity by K, we obtain 
the Darcy's velocity, which can be applied to the for- 
mulation of energy and species conservation equa- 
tions as 

O T - _ k v  dT-_ ~'m 6q2T- 
a ~ 7 -  ~ dy pcp dy2 

c3y- ~3y- 02y - 
dt ky~y-y - D -  ay a 

where 2m is the effective stagnant thermal conductivity 
in the porous medium, q the heat of combustion per 
unit mass of the species consumed, E the activation 
energy, a = [q~cp+ (1 -~O)Cs]/Cp the specific heat ratio, 
R ° the universal gas constant, B the pre-exponential 
factor representing the collision frequency, q~ the 
porosity of the porous bed, c~ the specific heat of 
the solid porous material, and the superscript " - "  
denotes quantities in the porous region. Both 2m and 
a are functions of the constitutive characteristics of the 
fluid and solid. To obtain equation (4), local thermal 
equilibrium between solid and fluid phases is assumed. 

The boundary condition for the energy equation at 
the impermeable wall (at y = 0) depends on the cases 
specified. It is 7"- = T~ for an isothermal wall and 
~T-/Oy = 0 for an adiabatic wall. For the species 
equation, there is no net flux and hence 
v Y - - D ( O Y - / d y )  = 0, which can be further reduced 
to O Y-/Oy = 0 because v = 0 a ty  = 0. At the interface 
between these two regions, y = H, the temperature 
and the species concentration must be continuous. In 
addition, the flux transported from one region must 
be transported into the other, Thus the interface con- 
ditions are 

y = H :  T + = T - ;  Y+ = Y-,  

2(OT+/Oy) = 2m(OT-/Oy); OY+/Oy = OY-/c3y. (6) 

The required initial conditions will be specified later. 
Because the normal flow velocity v and all the bound- 
ary conditions are independent of x, the solution is 
expected to be independent of x so that O/gx = 0 in 
the conservation equations. 

Introducing the nondimensional quantities 

qYoo/Cp qYoo Y~ 

l /  ,~ ~,/2 v.mo 
= y l~k -~p)  R qYoolc~ f =  kt 

~' ~m ~/Cp n ~ = y  Le=7~ Da=p~ 

where Le is the Lewis number meaning the ratio of 
gaseous thermal diffusivity to mass diffusivity, Da the 
Damk6hler number representing the chemical reac- 
tivity and 2 the ratio of thermal conductivities, the 
system is nondimensionalized to 
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- - -  ~ - -  - 2 - -  = Da ~" exp 
a 8[ ) 8~ 89: 

8~  8 f  1 8: f 

8[" - f  8~ Le 8,~- 

= - D a Y  exp (  

a~+ a7~+ a27~ 
8f - f  82 8f: 

aP + ~P+ 1 8~P + 
#~ f a f  Le Of z 

= 0  

(7) 

(8) 

(9) 

o (lO) 

f = 0 :  8f- /#f  = 0 

7 ~- = Tw (isothermal wall) or 

37~-/?~ = 0 (adiabatic wall) 

i = B :  f + = 7  ~ - ~  
8~ 80 

f+  = f -Sf  8f  (12) 

p---,o~: / % ~ 0  f '  ~ 1 .  (13) 

(ll) 

The value of  ~ can be determined from Cheng [12], 
which is usually large (2 >> 1) because the thermal 
conductivity of solids is larger compared to that of 
gases. 

Due to the catalytic reaction at the surface of cata- 
lyst porous material, chemical reaction can occur 
under low temperature conditions. Thus the function 
of the catalytic porous bed is to reduce activation 
energy so that appreciable reaction can occur at a 
temperature much lower than necessary for con- 
ventional combustion processes. Moreover,  due to the 
large thermal inertia of  the solid porous material, cata- 
lytic reactors can sustain stable reaction for fuel con- 
centrations much below the lean flammabili ty limit 
in conventional combust ion situations [19]. Strong 
catalytic reaction is considered in this study so that 
the low activation energy limit,/~ << 1, is adopted and 
the Arrhenius term can be linearized to 

exp ~ _ + - ~ f  = I ~ + ~  + . - . .  (14) 

The catalytic effect also leads to the distributed reac- 
tion throughout  the porous bed without a localized 
vigorous flame. 

3. STEADY-STATE ANALYSIS FOR A THIN BED 

3.1. Analysis 
For  the steady-state situation, equations (7)-(12) 

are reduced to 

: d 2 T  d T -  { /~ 
J . - - + f ~ f - = - D a Y -  l d 0 2  ~ ~ 7 ~ - + 7 ~  

1 d2Y d Y -  f /~ 
+ ~ T = D a f - ~ I  f - + L  Le dy- 

~-" "'t 
05) 

06) 

d2¢+ d/~+ 
- -  + 9 ~  = 0 (17) 
d0: dy, 

1 d 2 Y~ dY* 
+ 9  d~f, = 0  (18) Le d f  2 " .' 

f ' = 0 : d Y - / d ~ = 0  

7 ~ = 7~w (isothermal wall) or 

d f ' - / d f  = 0 (adiabatic wall) (19) 

d t  + d7 ~ £ = B :  f + = ~ -  - ~  

d]  ~+ d Y -  
1 ~* =- I2- - (20) 

df d •  

Because 2 is large, a small parameter  e can be defined 
as e = ~-J/2 and the solutions of T+ and Y-+ can be 
expanded as 

~+ = L ~ + ~ + ~ ¢ ~ + ~ ? ¢ ; + o ( ~  ~) (21) 

)~-+- = fff + r f i  f +O(e2).  (22) 

In the gas phase region, substituting equations (21) 
and (22) into equations (17) and (18) and solving 
subject to equation (13) yield 

7 ~* = [ao +~'a~ +O(s2)]er fcO 3) (23) 

Y+ = l + [ b ~  +sbf  +O(efl)]erfc[~/(Le)i ] (24) 

where the complementary error  function is defined as 

;/ erfc(z) = ,](2/~) e x p ( - ~ 2 / 2 )  d~. 

In the porous bed, since the activation energy is 
considered low, we assume that  it is of  O(c) so that it 
can be scaled as /~  = e/~. Substituting equations (21) 
and (22) into equations (15), (16) and (20), we obtain 

d~'T?/dO: = 0; i =  0, 1 (25) 

dZT~; d2~ 
d P: + f ~ ) r  = - Da ~'o (26) 

dp 2 ~ dp = - 7~ o + f ~ j  (27) 
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1 d2I~o dido 
Le dO E + f i ~ -  = Dat 'o  (28) 

- -  +O--~f  - = D a  Yr (29) 
/~e dO2 77o + tool 

with the interface conditions 

O = ~ :  7?,+=7?,- f ~ = f r  

d I?i/d0 = d Y,+/d0 ; i = 0, 1 (30a) 

d7?o/dO = d7?{/dO = 0 (30b) 

d7?~-/dO = dT?+/dO dT?3/dO = d7?+/dO. (30c) 

Solving equations (25), (28) and (29) subject to equa- 
tion (19), we obtain 

7?- = 7?w + [ao +~a~- + O(e2)]0 (isothermal wall) 

(31a) 

7? = ag + e a {  + O ( e  2) (adiabatic wall) (31b, 

~'o = bo FI (0) (32) 

I?~- = [b~- + Gl (O)IF, (f)  + f G :  (0)F2 (0) (33) 

where 

rJ~. ~ 2 "] (LeO2)J 
F,(0, = l+  _2, LLl0t,,a- n,j  (2j)! 

F : ( : , = l + 2  ( D a + l -  

G, (Y) = t cezjats)  Jo F , ~ ' F 2 F i )  ay 

f:" Yo F,/(7?o_'+ 77~) 
G: ( f )  = - (LeDaR) Jo F, F: +O(G F'2 - F2FI) d :  

and F~ = dFjdO. In the above, a f  and b# are the 
• / 

integration constants to be determined. 
For  the isothermal wall case, we apply equation 

(30) to equations (23) and (31a) to yield 

7? = 7~w + O(e 2) (34) 

7?+ = 77,~ erfc(O)/erfc(/~) + O(e:). (35) 

Next, applying equation (30a) to equations (24), (32) 
and (33), we obtain 

F'~ (/-/~) + gG 2 (/-1)[F~ F 2 +/~(F~ F~ -- F 2 F{ )]: = n 
l 7+ = 1 + [F~ (/~)/A] + F~ (/-1) 

erfc[~/(Le)0] + O(e:) (36) 
x errck/(Le)~q 

l~_ = 1 -ea2(/-2r)[(/4+A)F2(/~) +HAF~(/-I)] 
F, (/4) + AFt (/i) 

x F, (0) + e { [G, (0) - G, (/t)]F, (f)  

+?G2(0)F2(f)} + O(d) (37) 

where A = 4[n/(2Le)] erfc[x/(Le)/-1 ] exp(LeI~2/2). 
For the adiabatic wall case, equation (30b) is auto- 

matically satisfied and additional conditions are 
needed. These conditions can be obtained by applying 
equation (38) to equations (26) and (27), integrating 
the resulting equations once, and then substituting to 
equation (30c) to yield 

= 7 
dO - Oa J 0  tz° d0 

dO - D a  77o+77~J dO. (38) 

Applying equations (30a) and (38) to equations (23) 
and (31b), 7?± can be determined as 

to + )jd: (39) 

n /~2 . : = /(+aex,( )errc,y, 

x f : [  12o + g ( ] ) 7  ~#Y~ff. ~ +  O(e=)]dO . (40, 
~ + ~ ~ /  / 

The solution of I ~ is also given by equations (36) and 
(37). 

3.2. Results and discussion 
The thermal-chemical characteristics in the flow 

field depends on the reactants and their concentration 
for the actual running situations. To demonstrate the 
salient features of the solution more clearly, we 
assume that the reactants are supplied at 300 K and 
the adiabatic flame temperature is 2180 K so that 
77~o = 0.1376. Other values used for computations are 
Le = 1, Da = 1, ~ff = 1 and ). = 1/e 2 = 20 unless other- 
wise specified. Numerical integration is necessary for 
the expressions in the integral form, which is carried 
out by a Gaussian quadrature method. 

For  the isothermal wall case, we assume the wall 
temperature to be 700 K and hence 7?w = 0.3211. 
Figure 2(a) shows the profiles of  temperature 77 and 
mass fraction I? vs )3 for selected bed thickness/q. In 
the porous bed, the temperature remains a constant to 
the second-order approximation because of  the high 
effective thermal conductivity, which can be seen from 
equation (34). The heat generated through the reac- 
tion is completely transferred to the gas phase to pre- 
heat the gaseous flow and to the impermeable surface. 
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Fig. 2. Variations of temperature T and reactant concentration Y vs the spatial coordinate f for a thin bed 

with an (a) isothermal wall and (b) adiabatic wall. The broken curves are the numerical solutions. 

The gas temperature then increases when approaching 
the interface. Because of  the catalytic reaction, I > 
decreases with decreasing f in the porous bed, as 
expected. The value of  Y starts decreasing from unity 
before the flow enters the porous bed due to mass 
diffusion. The effect of  bed thickness on the reactant 
concentration is also presented in Fig. 2(a). For  a 
thicker bed (larger/~),  the resident time is larger so 
that the conversion from reactants to products is 
higher, and the reactant concentration is lower. 

To assess the accuracy of  the perturbation analysis, 
equations (13) and (15)-(20) are solved numerically 
using the same parameters by a sixth-order Runge 
Kutta  method. The results are presented in Fig. 2(a) 
in dashed curves for comparison. It is shown that the 
perturbation and numerical solutions for 17 agree well 
with each other. The results for the temperature 
profile, however, are different. When the porous bed 
is thin, s a y / ~  = 2, the agreement between these two 
approaches is satisfactory. By increasing the bed 
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thickness, the agreement becomes poorer, which 
means that the perturbation analysis cannot properly 
describe the heat transfer process when the porous 
bed is thick. This is due to high flow velocities in the 
gaseous region and in most of the porous bed except 
near the wall. As a consequence, convection transport 
is comparable with diffusion in the energy equation, 
so that the analysis that neglects the convection effect 
cannot be applied, and a separate analysis is necessary. 

For the adiabatic wall case, there is no heat transfer 
to the wall and the wall temperature is determinable, 
and the solution is shown in Fig. 2(b) using the same 
parameters. The heat and mass transfer characteristics 
are similar to those for the isothermal wall case, except 
that there is no temperature gradient at the wall, and 
the wall temperature depends on the bed thickness. 
The temperature in the porous bed is higher for a 
thicker bed because more reactants are converted to 
products and more heat is generated through the reac- 
tion. Similar to the isothermal wall case, the per- 
turbation solution is not applicable when the bed is 
thick. 

The effect of Lewis number on the solutions for the 
isothermal and adiabatic wall cases is shown in Fig. 
3. For gaseous flows, Le is close to unity so the range 
is selected to be 0.5-1.5. Since Le is the ratio of gaseous 
thermal diffusivity to mass diffusivity, a lower Le 
means a higher mass diffusion rate when the thermal 
diffusion rate is held fixed. Thus for a smaller Le, the 
reactant concentration is lower in the region relatively 
far away from the wall because the reactant is diffused 
into the porous bed at a higher rate. Because the 
chemical reactivity is fixed, reaction rate depends 
mainly on the concentration so that more reactant 
is consumed and more heat is generated. Thus, the 
temperature is higher for the adiabatic wall case, but 
remains the same for the isothermal wall case, as 
shown in Fig. 3 because of the high effective thermal 
conductivity. Although more reactants are converted 
to products, all the extra reactants cannot be 
consumed. The remaining is accumulated in the region 
near the wall which results in a higher concentration. 
In the region extremely far away from the surface, the 
reactant concentration is not affected by Le because 
the mass transport is convection controlled. The 
effects of Da and E are qualitatively similar to those 
for the thick bed case and will be discussed later. 

4. STEADY-STATE ANALYSIS FOR A THICK BED 

4.1. Analysis 
From the previous section, we understand that by 

gradually increasing the bed thickness H or the flow 
strain rate k till/1/= O(1/e), the analysis cannot prop- 
erly describe the heat transfer process so that a differ- 
ent analysis is necessary. For this thick bed situation, 
by let t ing/1 = l/(eh) where h is an O(1) parameter 
representing the reciprocal of rescaled bed thickness, 
we can define a new spatial coordinate z = fi/lq = ehf. 

Applying this new coordinate to equations (12), (13) 
and (15)-(20), the transformed equations are 

h2d2T dT - ( e/~ ) 
+ z  . = - D A Y -  1 " 

dz clz ~ -  +7~ +" 

82h2 d2 T+ d7  ~+ 
+ z ~ - z  = 0 (43) 

e2 h2 d2 )7+ d]~+ 
- -  + z T s  = o ( 4 4 )  
Le dz 2 

z = O: 7 ~- = 7~w (isothermal wall) or 

d f ' - / d z  = 0 (adiabatic wall) d12-/dz = 0 (45) 

z ~ o o :  7 ~ + ~ 0  Y + ~ I  (46) 

z =  1: 7~+ = 7 ~- e2 dT~+ dT~ 
dz dz 

d] 2+ d12 
]2+ = 12- d~- - dz " (47) 

In the gas phase region, z > 1, the transport process 
is convection controlled. Substituting equations (21) 
and (22) into equations (43) and (44) and solving 
subject to equation (46) yield i°0+ - 0 and 12o + = 1. 
Since the interface conditions in equation (47) cannot 
be satisfied, there is a thin layer adjacent to the inter- 
face in which the characteristics of heat and mass 
transport is different. A subscript "o" is used to denote 
solutions in the outer region away from the interface. 
In the thin inner layer, diffusion and convection 
transports are comparable so the coordinate need be 
stretched as ~ = (z-1)/(eh) 2. Applying ~ to equations 
(43) and (44), expanding and solving the resulting 
equations yield 

77~ + = [ai+o+eai3 +O(e2)]e -:" (48) 

~ = l +[bj+.o+ebj~ +O(e2)]e Lee (49) 

where a~ and b:~,j are integration constants to be deter- 
mined, and the subscript "i" denotes the inner solu- 
tions. The matching conditions 7~ + (( --* oo) ~ 0 and 
l?i + (~ ~ ~)--* 1 have been used in obtaining equa- 
tions (48) and (49). At the interface, ( = 0, applying 
equations (48) and (49) into equation (47) yields 
b ÷ b + 0 so that 4 + = 1 +O(e2), and the inter- i,0 ~ i,l 
face conditions become 

z =  1: 7 ~- = - h 2 ( d T - / d z ) - a + + ~ a i ~ + O ( e 2 ) ; -  i,o 

f -  = 1 + o & ) .  (50) 

In the porous bed, expanding equation (42) and 

(41) 

h2 d 2 Y - + z d ] 7  ( e£ ) / ~ 2  
Le dz 2 ~ =  Da f ' -  1 ~_ + ~ + . . .  

(42) 
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Fig. 3. Temperature/~ and reactant concentration I ~ in response to variations of the Lewis number Le, for 

a thin bed (/~ = 2) with an (a) isothermal wall and (b) adiabatic wall. 

solving the resulting equations subject to equation 
(50) give 

E 1 9 o = Z TM l+eDaff~ : z (7~Z0+~)  +O(e  2) 

(51) 

which depends on 7~o,0. Similar to the gas phase analy- 
sis, the boundary condition at z = 0 cannot be satisfied 
so that there is another thin boundary layer near the 

wall. The subscript "o"  is then used to denote the 
outer solutions away from the impermeable wall 
(z = 0). Next expanding equation (41) following 
equation (21), and solving the two leading order equa- 
tions subject to equation (50) give 

]e'o, 0 ~ a + i,o + [(ai~o/h 2) + 7] 

f, x exp [(1-z2)/(2h2)l dz+F (z )  (52) 
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To,, = ai3 + [(ai+l/h 2) + dp] 

x f l exp [(1 -zz)/(2h2)] d z + ~ ( z )  

where 

(53) 

exp ~ z - " e x p  - -  dz dz 
• (z) = ~ 2h dz 2h 2 

' = (~')Z= l =Daj~l{(--l)J/ 
F(z)=Daj~=t{(-1)J(za#+2J-1) / [hEJ ~_ (Da÷2n-1)]} 

lh2J(Da+2j)~_(Da+2n-l)]} () ,;od  ~ , =  ~S-: =, = 

1.0 

0.8 

0.6 

0.4 

0.2 

O.C 
0 12 

= 5) =~0  

/ / L A .  0 
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4 8 
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Fig. 4. Variations of temperature /~ and reactant concentration ]~ vs the spatial coordinate 33 for a thick 
bed with an (a) isothermal wall and (b) adiabatic wall. The broken curves are the numerical solutions. 
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In the thin inner region adjacent to the wall, a 
stretched coordinate 20 = z/eh is defined. Applying this 
coordinate to equations (4 1), (42) and (45), we recover 
equations (15), (16) and (19) so that the solution for 
the thin layer model is applicable in this region. This 
is expected because the normal flow velocity is rela- 
tively low near the wall as in the thin wall case. Thus, 
by defining 

l~, - =(e,h)D"[l~,~o+e,)~.~ +O(e2)]  (54) 

to properly account for the ordering, the solution can 
be obtained from equations (32) and (33) as 

~', = (~.h) Da {<b , .  0 -~- G [ b ;  I -t--- Gi.  I (20)] >F~ (20) 

+ ~20G,,:(20)G (20) + O(~2)} (55) 

where b.~ are integration constants to be determined, 
and the subscript "i" denotes solutions in the inner 
region. In the above G,.j(20) are the Gj(20) after equation 
(33) with/~o and 1~0 replaced by ir~.0 and I~,.0. 

1°l 1 r~ s o , ,=o  

I- .~ =~.° o.~/-'- / / A ,  I 
o-. t / / / -  I 

0.6 0 

2 
0.4 

0.2 

0"00 2 4 6 

(a) 

1"° / o = = o  ^ 

7 / / /  ~=~o 

0.4 

4 6 

co) 
Fig. 5. Temperature ir and reactant concentration 1 ~ in response to variations of the Damk6hler number 

Da, for a thick bed with an (a) isothermal wall and (b) adiabatic wall. 
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Fig. 6. Temperature T and reactant concentration 1~ in response to variations of the Lewis number Le, for 
a thick bed with an isothermal wall. 
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Fig. 7. Reactant concentration at the wall I?(0) vs the bed thickness/4, for specified Damkfhler number 
Da, for a thick bed with an isothermal wall. 

Matching between the inner and outer solutions 
yields the matching condit ion 

Yi-  (.Y ~ oo ) = (~hf)) TM 

[ ] x l + ~ D a ~  z (10~ ,o+~  ) +O(~  2) (56) 

~ - ( 9 ~ )  = a + ( i,o + tai,~) + { [(ai,~ + ~aj~)/h 2] 

I ~ exp [(1 -z2)/(Zh2)] dz +y+~(k} 
J0 

+ [F(0) + e~(0)] - ~hfi[(ai+o/h 2) + 7] 

x exp [1/(2h2)] + O(e2). (57) 

Applying equation (56) to equation (55), we obtain 

bi~o = (f'°"/F~):~ and 

b i l l=  bi_~[DaEfo l dz/z 
• ' 

-(p~-°"G,,zF2):,~o~]-G~,~( p -~oo). (58) 
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Fig. 8. The minimum bed thickness/~m, to reach 99% conversion as a function of the Damk6hler number 
Da, Lewis number Le, and activation energy/~ for the isothermal wall case. 

The composite solution in the porous bed can be 
obtained by adding the outer and inner solutions, then 
subtracting the solution in their common region to 
yield 

Y, = biToF, + ~ (hi 5 + Gi,,)F, + f,G~,2F: 

--DaF~f ~ i ' - , ~  ] + O ( e 2 ) l .  (59) 
" Jo T ~ o + 1 . 3  ) 

The solution of temperature needs to be further 
divided to two cases depending on the wall condition. 
For the isothermal wall case, the solution is given by 
equation (31a) as 

"F, = Tw+[ai.o+eao+O(e2)]y. (60) 

Applying the matching condition of equation (57) 
yields a,~ = 0 

(61) 

a~3 = - h exp [1/(2h 2)][Tw - F(0) + hZ~,]/e (62) 

{010' a ÷ - h  2 exp [(1 -z2)/(2h2)] d z +  ~(0 

where 

(63) 

~0 
1 

c¢ = h 2 + exp [(1 --z2)/(2h2)] dz. 

The composite solution in the porous bed can then be 
determined as 

= ~ - ~ - '  [ ~  - c (o)  - ~ ( o )  + h ~ (~ + ~ ) 1  

x exp [(1 - z2)/(2h2)] dz+ [ F ( z ) -  F(0)] 

+ e [ ~ ( z ) -  ~(0)]  + o ( d ) .  (64) 

Moreover, the solution in the gas phase becomes 

h 2 
7~*= ~ i T ~ w -  (7+~,~b) f/exp~hT-)dz/'1-22' 

- F (0 ) -~ (1 ) (0 ) ]  e -~ + O(e2). (65) 

For the adiabatic wall case, the solution is given by 
equation (31b) as 

] r i  = ai~-~-gai~] q- O(e2 ) .  (66) 

Applying equation (57) yields a +=i,0 a i ] 0 - F ( 0 ) =  
-h27  and a~+~ = a~: - ~ ( 0 )  = -h2~b, so that the com- 
posite solution in the porous bed is 

T- = F(z)+eO(z)-h2(7+e~a)+O(~ 2) (67) 

while the solution in the gas phase becomes 

T+ = -h2[?+eq~+O(e2)]e  - : .  (68) 

4.2. Results and discussion 
Computat ions were carried out using the same par- 

ameters specified in Section 3. Figure 4(a) shows the 
temperature and concentration profiles for selected 
values of the bed thickness/4 for the isothermal wall 
case. In the l imit /~ = 0, there is no porous bed and no 
chemical reaction so that the reactant concentration is 
a constant. The solution for ~ = 2 is extracted from 
Fig. 2(a) for comparison. Similar to the thin layer 
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Fig. 9. Evolution of temperature /~ and reactant concentration ]~ with time for the isothermal wall case 
with/~ = 10. 

case, I? decreases with decreasing ~ in the porous bed. 
For a thicker bed, the reactant concentration in the 
porous bed is lower because the resident time is larger 
so that more reactants are consumed. The concen- 
tration remains unchanged in the gas phase since the 
flow is convection dominated. 

There exists a maximum temperature in the porous 
bed because of  the high residence time, which yields a 
high conversion of reactants and a high heat gen- 
eration through reaction. Part of the heat generated is 
accumulated in the bed although the effective thermal 
conductivity is high. However, it should be mentioned 
that this phenomenon is not observed when the reac- 

tion rate is low. The maximum temperature is higher 
for a thicker bed because of a higher heat generation. 
In the gas phase, the temperature gradient is high near 
the porous bed also because of the strong convection. 
The corresponding plot for the adiabatic wall case is 
shown in Fig. 4(b), in which the results are quali- 
tatively similar to the isothermal wall case except that 
the maximum temperature occurs at the impermeable 
wall because there is no heat transfer there. To assess 
the accuracy of the perturbation analysis for a thick 
bed, equations (41)-(47) were solved numerically by 
a sixth-order Runge-Kutta  method and the results are 
also presented in Fig. 4. It is shown that agreement 
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Fig. 10. Evolution of temperature 7 ~ and reactant concentration I~ with time for the adiabatic wall case 
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between the perturbation and numerical solutions is 
good so that the perturbation analysis properly 
describes the characteristics of the system. 

The effect of the chemical reactivity, expressed by 
the Damk6hler number Da, on the solution is shown 
in Fig. 5, with the chemically inert limit given by 
Da = 0 and ~ = 1. It is seen that for a higher chemical 
reaction rate (a larger Da), more reactants are con- 
verted to products so the reactant concentration is 
lower and the temperature is higher. For the iso- 
thermal wall case, when Da is small, the heat generated 
is not sufficient to overcome the outward heat transfer 
so that there is no local temperature maximum as 

discussed earlier. Heat is transferred into the system 
from the impermeable wall for this situation. When 
Da is sufficiently large (i.e. chemical reaction being 
sufficiently strong), a maximum temperature appears 
in the porous bed. 

Because low activation energy is considered in this 
study, E has only weak effects on the solution. Since 
the activation energy is the energy barrier for the 
chemical reaction to occur, the reaction is stronger for 
a smaller E so that the reactant concentration is lower 
and the temperature is higher. Thus the effect of E 
is qualitatively similar to Fig. 5 with increasing /~ 
equivalent to decreasing Da. Moreover, because the 
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Fig. 11. The transient period t~ vs the bed thickness/1, for selected values of the Damkfhler number Da, 
Lewis number Le, and activation energy E. 

effect of activation energy is linearized, ignition is not 
possible, which is realistic for catalytic converters. 

The effect of the Lewis number for the isothermal 
wall case is presented in Fig. 6. Because the mass 
transport is convection-reaction controlled in most of 
the porous bed, the diffusion transport is significant 
only in the thin inner region near the wall, in which it 
is comparable with the convection transport. Thus, 
the Lewis number effect on the reactant concentration 
I; is weak and needs to be considered only in the thin 
region near the wall, for which 1~ is higher for smaller 
Le as observed in Fig. 3(a). Lewis number has only 
negligibly small effect on the flow temperature because 
in the inner region where mass diffusion is important, 
energy transport is controlled by conduction only. 
The situation for the adiabatic wall case is quali- 
tatively similar and will not be presented. 

One of the major objectives of this study is to inves- 
tigate the minimum porous bed thickness, /~.~i,, for 
which complete reaction is attained. To obtain this 
information, we first plot the reactant concentration 
at the wall, 17(0), vs the bed thickness,/ t ,  for selected 
values of Da. This quantity represents the conversion 
rate, and is important in the determination of bed 
thickness for catalytic converters. The results are pre- 
sented in Fig. 7 for the isothermal wall case, which 
shows that ]~(0) decreases with increasing/~ and Da, 
which is expected from our earlier discussion. The 
results for the adiabatic wall case are qualitatively 
identical and quantitatively close to Fig. 7, and will 
not be presented. The correction of Le and E can be 
included following our earlier discussion if interested. 
Since Y(0) --, 0 only when/-7 ---, ~ ,  the value of J~min 
cannot be obtained. However, if 99% conversion is 
adopted as complete reaction,/ t~i ,  can be plotted vs 

Da for specified values of Le and/~  as shown in Fig. 
8, which shows that the bed size required to reach 
complete reaction is thinner for higher Da, lower Le, 
and lower ~, as expected following our earlier 
discussion. Since quantitative difference between the 
isothermal and adiabatic wall cases are indis- 
tinguishably small, Fig. 8 is applicable for both of the 
cases. 

The effect of the flow strain rate k appears in the 
characteristic length scale used in the non- 
dimensionalization. By increasing k, the characteristic 
length scale is reduced so the porous bed behaves like 
a thicker bed. This is reasonable because the flow 
velocity is higher and hence the convection transport 
is stronger. However, the Damk6hler number is 
decreased because the resident time for the chemical 
reaction to occur is reduced. Therefore, the effect of k 
is the same a s / t  with a lower Da so that a separate 
discussion is not necessary. 

5 .  T R A N S I E N T  A N A L Y S I S  

During the initial period after the reactive fluid 
starts passing through the porous bed, a large amount 
of reactant leaves the bed without being converted to 
the products because the catalytic porous bed does 
not operate at its designated condition, so that steady 
analyses cannot be applied. To complete our study, 
the flow behavior in the initial transient period is also 
investigated. 

The conservation equations and boundary con- 
ditions for the transient study are presented in equa- 
tions (7)-(13). The initial conditions required to solve 
the system are obtained by considering the flow to be 
chemically inert initially, i.e. 
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f = 0 , ~ > 0 : 7 ~ = 0  I~= 1. (69) 

The flow velocity is not affected by the transient 
behavior because constant density is assumed. 

Because analytical solution does not exist for the 
transient problem, a numerical approach using a finite 
difference method with forward difference in time and 
central difference in space is performed. The bed thick- 
ness /q  = 10 is used to present the result more clearly. 
Steady state is considered reached when the change of  
temperature and concentration in a time step is less 
than 10-7. The solutions of  T and Y as functions of  f' 
and t~for the isothermal wall case are shown in Fig. 9. 
At t ~ = 0, there is no chemical reaction and the solution 
is given by equation (69). By continuously increasing 
t~ the reactant concentration decreases while the tem- 
perature increases due to the reaction. Steady state is 
reached when t ~  5.05 for this case. The correspond- 
ing solutions for the adiabatic wall are presented in 
Fig. 10. Similar evolution is observed with the steady 
state reached at f = 5.06. 

The time required to reach steady state, or the tran- 
sient period, ~, is plotted in Fig. 11 vs the bed thickness 
/q for some values of  Da, Le and/~. It is shown that 
for fixed kinetic and transport parameters, ~ is larger 
for a thicker bed because a larger time is needed to 
reach a higher conversion rate. For  thick beds, the 
increase of  t~ w i t h / 4  is gradual since the transport is 
basically convection-reaction controlled. Moreover,  
is smaller with increasing Da and decreasing Ebecause 
the reaction rate is higher, and decreasing Le because 
1~(0) is higher. Because the difference of  t], for the two 
cases is indistinguishably small, Fig. 11 is applicable 
to both of  them. 

6. CONCLUDING REMARKS 

In this study, the gaseous flow of  chemically reactive 
premixtures within a catalytic porous bed is theor- 
etically investigated to model the operation of  cata- 
lytic converters. A laminar stagnation-point flow is 
adopted to best describe the flow field in the converter. 
Both the steady-state and initial transient operation 
situations are analyzed for both the isothermal and 
adiabatic wall conditions. 

For  the steady-state situation, reactant con- 
centration and temperature distributions are solved 
analytically and then compared with numerical solu- 
tions. Because the heat and mass transport charac- 
teristics are different for thin and thick bed cases, 
separate analyses are performed. For  a thick bed, a 
multiple layer asymptotic analysis is necessary. 
Results show that in the porous bed, the temperature 
is higher and the reactant concentration is lower for a 
thicker bed, higher chemical reactivity (higher 
Damk6hler  number Da), lower activation energy, or 
lower mass diffusion rate (higher Lewis number Le), 
because of  the higher conversion from reactants to 
products. The minimum bed thickness required to 
reach 99% conversion is also obtained vs the above 

parameters. The analytical solutions agree well with 
numerical integration of  the governing equations. 

Because of  analytical difficulties, the initial transient 
period is numerically studied using finite difference 
methods. The evolution of  temperature and reactant 
concentration with time are obtained, which gives the 
time required to reach steady state. 

The physical parameters for the porous bed such 
as the pre-exponential factor B, activation energy E, 
porosity ~b, and the effective thermal conductivity 2,, 
depend on the catalytic material selected and can be 
specified only through experiments. The gas proper- 
ties are relatively well known, but the exact speci- 
fication depends on the components of  the gaseous 
mixture. 
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